Efficient Oblivious Database Joins

Authors: Simeon Krastnikov, Florian Kerschbaum,
Douglas Stebila

Presenter: Xiling Li

May 21, 2025, Northwestern DB Reading Group

Outline:

e Motivation

e Contribution

e T[hreat Model

e Methods

e Experimental Results

Motivation

e Outsourced querying over cloud service providers (CSPs) is prevalent.

e However, CSPs are untrusted.
o Adversary may have full control over CSPs.

e Goal: Enable to query over CSPs while revealing nothing about databases.

Obliviousness

e Beyond security guarantees (computing on encrypted data), memory access patterns
during execution is a major source of information leakage.

e Authors mention standard O(n log n) sort-merge join as an example.
o Adversary will learn data-dependent information!!!

e Oblivious RAM (ORAM) is a generic approach to protect the program oblivious.
o However, it is asymptotically inefficient (O(log n) lower bound per access).

e Instead, this work discusses data-independent control flows and data padding.

Contribution

e This work focuses on oblivious binary equi-join operator.
o Analogous to regular sort-merge join.

e With sorting network, the join is highly efficient, parallelizable and easy to verify.

e The proposed algorithm works for either machines with trusted hardware or

circuit-based cryptographic protocols like secure multiparty computation or fully
homomorphic encryption.

Table 1: Comparison of approaches for oblivious database joins. n; and n; are the input table sizes, n = n; + na,
m is the output size, m' = m + n1 + na2, t is the amount of memory assumed to be oblivious. The time complexities are in
terms of the number of database entries and assume use of a bitonic sorter for oblivious sorting (where applicable).

Algorithm /System Time complexity Local Memory Assumptions/Limitations
Standard sort-merge join O(m'logm') 0(1) not oblivious
Agrawal et al. [3] (Alg. 3) O(ning) o(1) insecure (see § 2.3.1 of [27])
Li and Chen |27] (Alg. A2) O(mninz/t) O(t)
Opaque [45] and ObliDB [13] O(nlog?(n/t)) O(t) restricted to primary-foreign key joins
Oblivious Query Processing [5] O(m' log?m') O(logm”) missing details; performance concerns
Ours O(m' log® m') 0o(1) -

Computing on encrypted data

e Outsourced external memory
o Client uses the server as external memory and compute locally after retrieving.

e Trusted execution environment
o Code is executed within a secure enclave isolated from untrusted OS.

e Secure multiparty computation
o It allows multiple parties to jointly compute a function over the secret input without
revealing anything about the input.

e Fully homomorphic encryption
o Computationally expensive for practical use due to one-time setup for circuits.

Threat Model

e The adversary has complete view of the public memory (e.g., RAM).

e System may has a limited |ocal memory (e.g., in TEE) hidden from the adversary.
o Adversary learns nothing except the runtime over the computation inside
such memory.

e With either TEE or cryptographic protocols, the adversary cannot know the
contents of the databases due to encryption.

Table 2: Properties of three levels of obliviousness.
. . . Bottom portion of table shows vulnerability of programs sat-
ZOO m I n g I n to O b I IVI O u S n eSS isfying these levels to timing (t), page access attacks on data
(pd), page access attacks on code (pc), cache-timing (c), or
branching (b) attacks when used in different settings.

e Level |l obliviousness Property/Setting I T
o Public memory is oblivious while local memory o loe mmemery - x S ¢
with non-constant size uses for non-oblivious . Memory t t /

. secure Coprocessor t t
Computathn TEE (enclave) t, pd, pc, c, b t, pc,c, b
Secure Computation n/a n/a v
FHE n/a n/a v

e Level ll obliviousness
o Both public/local memory are oblivious (doubly-obliviousness in Oblix).

e Level lll obliviousness
o Requires data-independent control flows.

e Revealing output length
o Worst-case padding up to maximum possible size for output.

Data-Independent Control Flow

140 if secret then
hile ¢ td
w ;f_zi<+3{:cre © z; : z; T1 4 Y1 - secret + z; - (—secret)

—— T2 ¢ 22 - 0 + z2 - (—secret)

else o Fian’ 0
Loop i T3 Y3 - Secre Y3
Io ¢ 2o
Branching
e Transform from Level Il to Level llI.
e Loop depends on either a constant length
or the input size.
o Replace while loop with for loop. BB —= ==
i P : S W S Cmom W
e Eliminate the explicit branching e == -
o No if-else for encrypted data. B s aaa = a0 S
. . . 2 4) S 4 ; ML I | S g
e Use bitonic sort for oblivious sort Smms 2 aamm S
. I 5 I S 3 ;ST Y| | L)
o Data-independent comp/swap. ST 2o o
o Sort n entries in O(n log? n). o
Bitonic Sort

(3)
Obliv.

expand

Fig. 4

N w8 B 8|S

Uy
Uz
us
U1
V)

J d J d J d J d
1 T o r r U T U
Overview s w0 a| |z ow| s ou
Y b |epand| T @ z uz | g
y b2 Fi;_',. 4 T a2 T ul Fi;_'_) T uz
e Augment each table into join groups. y b T T U T U3
o Resulting tables ordered by join attributes. Y B z ‘;2 ‘; Z‘"’ ; :}‘3
1 1 1
. (1) (alupm‘.- Yy bl Yy v2 y U1
e Each row in both tables with same attributes is in the ..., dimensions \ /
in Ty and T,
same group (»Fi,QA '2)A(u1lnitv,‘mi Sl S2 SZ
o Obliviously expand each group to S1 and S2. from this figure) e
. . . . ut from a simple
o Group dimension for x is 6 due to 2 x rows in T1 " ow-by-row join
and 3 x rows in T2 (Cartesian product). j is join attributes and d is other attributes
0 = = i i .
|S1 | |82| sum of group dimensions Algorithm 1 The full oblivious join algorithm
.)) 1: function OBLIVIOUS-JOIN(T1(4,d), T2(j,d))
e After expansion, aligns S2 with S1. 2: Ty, Ts(j,d, 01, 0) < AUGMENT-TABLES(T}, Ts)
o i i i in SMJ. 3 S1(4,d, a1, a2) + OBLIVIOUS-EXPAND(T1, a2)
Previous 3 steps simulating the sort step in SMJ T Sliin e Camrs et
5: S2 ¢ ALIGN-TABLE(S?)
e Then, join each row in both S1 and S2 for result. 6: ifnitializelTD(dl,(;lz) of size [S1] = [S2| =m
. . 7 orti+ 1...mdo
o Slmulate merge step in SMJ. 8 Tolil.dy S1[i].d
o Unlike regular SMJ, it advances both cursors at 9: Tpli).da < Sa[i].d
the same time. 10: return Tp

T

Augmenting tables

Algorithm 2 Augment the tables 77 and T» with the di-

mensions a; and ag of each entry’s corresponding group.
The resulting tables are sorted lexicographically by (j,d).

ny = |Th|, ny = |T2|, n = ny + na.

1: function AUGMENT-TABLES(T},T%) > O(nlog®n)

Union two input tables into Tc. 2

o Distinguish each rows with table id (tid).

Grouping Tc into contiguous blocks w.r.t. join attributes.
o Obliviously sort on join attributes and tid.

Q0SS TR OO

Tc(j, d, tid) (Ty x {tid = 1}) U (T» x {tid = 2})
Tc + Brronic-Sorr(j 1, tid 1) (Tc)

Te (4, d, tid, a1, az) <+ FiLL-DiMENsIONS(T¢)

Tc + Brronic-Sorr(tid 1,5 1,d 1) (Tc)

T1(j,d, o, 00) « Te[1...n]

T2(j, d,al,az) — Tc[m +1...m +n2]

return 74,75

Fill dimensions for join groups in Tc for both input tables.
o Two linear scan (one forward and one backward).

Group Tc again to put rows in the same table contiguously.
o Obliviously sort on tid, join attributes and data attributes.

Split Tc into two augmented tables w.r.t. Tid.
o We have augmented T1 and T2 respectively.

Group dimension of each join key is alpha1*alpha2.

J d tid oy as J dtiday a

z a 1 1 - a1 2 3
]z a1 2 - dlz a1 23
;321@222 :E$U2223
sl |z us 2 2 3 £E[|z w2 2 3
S vy 1 1 -] B[y b 1 o4 2
izl |y b1 2 - SE| [y b1 4 2
EE |y b1 3 -| EF|ybz1 o4 2
Byl |y b1 4 E5| |y ba1 4 2
i [ve2a T 28|y e 2]
Ly w242 @ Flyvo42

zw 2 01 zw 2 01

Oblivious Distribution

z f(z) iz f(z)
1 4 1 2 1
Tz 1 | (St [2 T3 3
T 3 e 3 O 4
T4 8 rows 4 Ty 6
s 6 5 T4 8
6 - =
6 D e
8 - -

A

N

(2) Obliviously
route each x

to f(z)

i T f(z)
1 22 1
2 - o
3 T3 3
4 T1 (4
5 = -
6 T5 6
7 = =
8 Ty 8
A

Algorithm 3 Obliviously map each z € X to index f(z) of
an array of size m > n, where f : X — {1...m} is injective.

1: function OBLIVIOUS-DISTRIBUTE(X, f, m)

2:

SO 00 SYISNCH i e

10:
11:
12:
13:
14:
15:
16:
17:
18:

All...nj« X

Bitonic-Sort(f 1)(A)

An+1...m] + @ values

extend f to f such that f(@) =0

iz Oflogam] =1

while 5 > 1 do
fori<m-—j...1do

y/(_* A[Z]' ; y and y’ are variables in
y & Afi + 4] the local memory, which
if f(y) > 1+ j then means read from public
v x4 memory to local memory
A[Z] <Y for each comp/swap.

> O(nlog?n)

> O(mlogm)

Ali+j] &y
else
Ali] &y
Ali+35] & o
j3/2
return A

e Before obliviously expanding T1 and T2 into S1 and S2, this work obliviously distributes first
occurrence of each join attribute into a correct destination position.

e The case of m=n is equivalent to oblivious sort while m > n is not trivial.

e Runtime complexity - O(n log? n + m log m): O(n log? n) sort + O(log m) iteration + O(m) inner loop.

Algorithm 4 Obliviously duplicate each z € X g(z) times.

O bI |V| Ou S EXpa N S | 0 N 1: function OBLIVIOUS-EXPAND(X, g)
2 > obtain f values and distribute according to f
- 3: s+ 1
z g(z) f(z) 1 z 2 T 4 fori«1...ndo > O(n)
5 z & X[i]
2 1 1 1 1 # 6 if g(z) = 0 then
2 3 3 | (1) Obliviews | 2 - 2 T T mark z as @
distribute (2) Fill down 8 else
r3 0 - Fig 3 3 T2 s 3 I 9 set f(z) =
s 2 6 4 - 4 T2 10: s+ s+ g(x)
11 X[i]| &z
Iy T
3 1 8 S o 4 12: A + EXT-OBLIVIOUS-DISTRIBUTE(X, f,s — 1)
6 T4 6 T4 13: > fill in missing entries
X 7 _ 7 T4 14: pT — &
15: fori«1...s—1do > O(m)
8 s 8 s 16: x & Ali
17: if £ = @ then
18: T px
A A 19: else
20: pT — T
21: Al &z
.. 22: return A
e After obliviously distributing first occurrence of each join 23:

attribute, linear scan A and duplicate join key to the null slots. ;; fun;?ilon E]XT-?{BLWIUUS-DISTRIBL‘TE(X, f,m)
: S =

26: BiToNic-SORT(# @ 1, f 1)(4) > O(nlog®n)
27 if m > n then
28: An+1...m] « @ values

29: extend f to f such that f(@) =0

30: continue as in O(mlogm) loop of Algorithm 3...
31: return A[l...m]

Aligning table

e Recall that S1 has alpha2 copies of T1 rows w.r.t. each
join attribute.
o E.g.,, 3 (x, al) to match 3 distinct rows with x
attribute in T2.

e Alignment matches each row in T1 to corresponding row
in T2.
o Match (x, u1), (x, u2) and (x, u3) once in T2 to
(x,a1) and (x,a2) respectively.
o Prevent duplicate matches for (x,a1) and (x, u1)
and miss match for (x,a1) and (x,u3).

e Give each row in each group a correct ii and sort on (join
attribute and ii) to put each rows in S2 into correct
positions.

o i can split each dup rows into a certain distance.

Algorithm 5 Reorder S; so that its m entries align with
those of S.
1: function ALIGN-TABLE(S?)

2: Sa(j,d, a1, a2,it) < Sz x {it = NULL}
3: for i+ 1...|S;2| do > O(m)
4: € (L SQ [1.]
5: q < (0-based) index of e within block for e.j
6: e.it < |g/e.az] + (¢ mod e.az) - e.ay
7 Sali] < e
8: S2 + Brronic-Sorr(j, i) (S2) > O(mlog® m)
9: return Sp
J d J d J d
r T U T U
z @ z Uy Reorder T U
T ay T U d values T U3
within each
'I: a2 x uz .‘,lll‘lp n1 S"x x ul
T az T Uz T U2
r a2 T ug r ug
Yy b y u Yy u
S1 Sa S

Evaluation

]+ SGX (transf d
Table 3: For each (non-linear) component of the al- — SGX (transformed)

gorithm: approximate counts of total comparisons 6
(or swaps) when m =~ n; = na, as well as empirical
share of total implementation runtime for n = 10°.

—&o— prototype * D.6T7

—%— insecure sort-merge

O
< 4 b
Subroutine Comparisons Runtime ;3
initial sorts on T n(log, n)?/2 60% é £ o 2.35
o.d. on Ty, T, (sort) n (log, n1)?/2 25% 2 s
o.d. on T}, T (route) 2mlog, m 3% I — e
align sort on S; m(log, m)* /4 12% [et 0.03
total 0=—— & - -
(when m ~ ny =ny) T(082n)° +nlogyn 100% 0.1 025 0.5 0.75 1
Input size (n) 108

e Implemented by C++ varying input size from n=10 to n10°.
e Time complexity is O(n log? n + n log n).
e Memory is max(n1, m) + max(n2, m), since Tc in augmenting tables is the largest.

Future Work

e May consider complex queries including multi-way joins.
e Group-by aggregation may take fewer sorting steps.

e Extend the general-purpose primitives in this work like oblivious distribution and
expansion to other oblivious algorithms in outsourced querying.

Thanks!

