
Efficient Oblivious Database Joins

Authors: Simeon Krastnikov, Florian Kerschbaum,
Douglas Stebila

Presenter: Xiling Li

May 21, 2025, Northwestern DB Reading Group

Outline:

● Motivation

● Contribution

● Threat Model

● Methods

● Experimental Results

3

Motivation

● Outsourced querying over cloud service providers (CSPs) is prevalent.

● However, CSPs are untrusted.
○ Adversary may have full control over CSPs.

● Goal: Enable to query over CSPs while revealing nothing about databases.

4

Obliviousness

● Beyond security guarantees (computing on encrypted data), memory access patterns
during execution is a major source of information leakage.

● Authors mention standard O(n log n) sort-merge join as an example.
○ Adversary will learn data-dependent information!!!

● Oblivious RAM (ORAM) is a generic approach to protect the program oblivious.
○ However, it is asymptotically inefficient (O(log n) lower bound per access).

● Instead, this work discusses data-independent control flows and data padding.

5

Contribution
● This work focuses on oblivious binary equi-join operator.

○ Analogous to regular sort-merge join.

● With sorting network, the join is highly efficient, parallelizable and easy to verify.

● The proposed algorithm works for either machines with trusted hardware or
circuit-based cryptographic protocols like secure multiparty computation or fully
homomorphic encryption.

6

Computing on encrypted data

● Outsourced external memory
○ Client uses the server as external memory and compute locally after retrieving.

● Trusted execution environment
○ Code is executed within a secure enclave isolated from untrusted OS.

● Secure multiparty computation
○ It allows multiple parties to jointly compute a function over the secret input without

revealing anything about the input.

● Fully homomorphic encryption
○ Computationally expensive for practical use due to one-time setup for circuits.

7

Threat Model

● The adversary has complete view of the public memory (e.g., RAM).

● System may has a limited local memory (e.g., in TEE) hidden from the adversary.
○ Adversary learns nothing except the runtime over the computation inside

such memory.

● With either TEE or cryptographic protocols, the adversary cannot know the
contents of the databases due to encryption.

8

Zooming into obliviousness

● Level I obliviousness
○ Public memory is oblivious while local memory

with non-constant size uses for non-oblivious
computation.

● Level II obliviousness
○ Both public/local memory are oblivious (doubly-obliviousness in Oblix).

● Level III obliviousness
○ Requires data-independent control flows.

● Revealing output length
○ Worst-case padding up to maximum possible size for output.

9

Data-Independent Control Flow

Loop

Branching
● Transform from Level II to Level III.
● Loop depends on either a constant length

or the input size.
○ Replace while loop with for loop.

● Eliminate the explicit branching
○ No if-else for encrypted data.

● Use bitonic sort for oblivious sort
○ Data-independent comp/swap.
○ Sort n entries in O(n log2 n).

Bitonic Sort

10

Overview

● Augment each table into join groups.
○ Resulting tables ordered by join attributes.

● Each row in both tables with same attributes is in the
same group.

○ Obliviously expand each group to S1 and S2.
○ Group dimension for x is 6 due to 2 x rows in T1

and 3 x rows in T2 (Cartesian product).
○ |S1|=|S2|=sum of group dimensions.

● After expansion, aligns S2 with S1.
○ Previous 3 steps simulating the sort step in SMJ.

● Then, join each row in both S1 and S2 for result.
○ Simulate merge step in SMJ.
○ Unlike regular SMJ, it advances both cursors at

the same time.

j is join attributes and d is other attributes

11

Augmenting tables

● Union two input tables into Tc.
○ Distinguish each rows with table id (tid).

● Grouping Tc into contiguous blocks w.r.t. join attributes.
○ Obliviously sort on join attributes and tid.

● Fill dimensions for join groups in Tc for both input tables.
○ Two linear scan (one forward and one backward).

● Group Tc again to put rows in the same table contiguously.
○ Obliviously sort on tid, join attributes and data attributes.

● Split Tc into two augmented tables w.r.t. Tid.
○ We have augmented T1 and T2 respectively.

● Group dimension of each join key is alpha1*alpha2.

FILL-DIMENSIONS

12

Oblivious Distribution

● Before obliviously expanding T1 and T2 into S1 and S2, this work obliviously distributes first
occurrence of each join attribute into a correct destination position.

● The case of m=n is equivalent to oblivious sort while m > n is not trivial.
● Runtime complexity - O(n log2 n + m log m): O(n log2 n) sort + O(log m) iteration + O(m) inner loop.

y and y’ are variables in
the local memory, which
means read from public
memory to local memory
for each comp/swap.

13

Oblivious Expansion

● After obliviously distributing first occurrence of each join
attribute, linear scan A and duplicate join key to the null slots.

14

Aligning table

● Recall that S1 has alpha2 copies of T1 rows w.r.t. each
join attribute.

○ E.g., 3 (x, a1) to match 3 distinct rows with x
attribute in T2.

● Alignment matches each row in T1 to corresponding row
in T2.

○ Match (x, u1), (x, u2) and (x, u3) once in T2 to
(x,a1) and (x,a2) respectively.

○ Prevent duplicate matches for (x,a1) and (x, u1)
and miss match for (x,a1) and (x,u3).

● Give each row in each group a correct ii and sort on (join
attribute and ii) to put each rows in S2 into correct
positions.

○ ii can split each dup rows into a certain distance.

15

Evaluation

● Implemented by C++ varying input size from n=10 to n106.
● Time complexity is O(n log2 n + n log n).
● Memory is max(n1, m) + max(n2, m), since Tc in augmenting tables is the largest.

16

Future Work

● May consider complex queries including multi-way joins.

● Group-by aggregation may take fewer sorting steps.

● Extend the general-purpose primitives in this work like oblivious distribution and
expansion to other oblivious algorithms in outsourced querying.

Thanks!

