
ZKSQL: Verifiable and Efficient
Query Evaluation with
Zero-Knowledge Proofs

Database Reading Group
Jan 17, 2025

Xiling Li
Specialized on secure, private and trustworthy data management

2

• Motivation

• Preliminaries

• System architecture

• Verifiable query evaluation

• Experimental results

• Related work

Outline

3

• Relational DBMSs are ubiquitous.

• Provide expressive, declarative queries with SQL.

• Goal: construct authenticated query answer without divulging
private input data.

Verifiable Querying in Zero Knowledge

4

• Students are increasingly using data to make decisions about when and where to attend college.

• Integrity of this data is paramount.

• We want to provide strong assurances that statistics from each school are accurate and complete.

Running Example: College Rankings Data

Forged data led to inaccurate rankings!

5

• Data owners are reluctant to accept public query over
their private databases.

• Data owners don’t want to reveal private information!

• Regulations on data privacy expose data owners to
further liability when they answer queries.
▪ Data leakage can create chilling effect.

Data Privacy for Verifiable Queries

GDPR:

●General Data Protection Regulation

●May 25, 2018

CCPA

●California Consumer Privacy Act

●Jan 1, 2020

Data breaches are also terrible!

6

How can users
obtain trustworthy
statistics without
data providers
sharing their

private records?

Dilemma: Verifiable, Privacy-preserving Querying

Data Integrity Data Privacy

7

• Contributions:

▪ First work (until the paper published) for ad-hoc SQL queries with Zero-Knowledge Proofs.

▪ Operator-at-a-time proofs for a given query plan.

▪ Set-based protocols for proving properties about intermediate tables.

▪ Experimental results on TPC-H benchmark demonstrate improvement with ZKSQL system.
• Up to two orders of magnitude over the pure-circuit baseline.

Our Solution - ZKSQL

8

• In a ZKP, a prover (P) convinces a verifier (V) that a statement is true without revealing its private information.
▪ In running example, an university is the prover.
▪ The DoE or U.S. News is the verifier.

• ZKP guarantees correctness, soundness, and zero knowledge.

What is a Zero Knowledge Proof?

9

• Problem statement:
▪ P has a private database D.
▪ P and V wish to evaluate query Q to prove authenticated query answer A.

• ZKSQL uses state-of-the-art interactive ZK protocols with commit-and-prove paradigm.
▪ Scalable to large data size due to the flexible proof size.
▪ Composable for complex query logic, where future operator-level protocols can be added directly.

• ZKSQL constructs proofs for ad-hoc queries that guarantees:
▪ A malicious P cannot sabotage integrity of query evaluation (correctness and soundness properties).
▪ A malicious V cannot obtain any unauthorized information about D (zero-knowledge property).

ZKP in Query Evaluation

10

• To remain zero-knowledge, proof evaluation is oblivious w.r.t. operator control flow.
▪ Operation on each tuple should be same even if it is not necessary.
▪ Prevents data access pattern leakage.

• Rather than removing a tuple, we keep each tuple in [D] with a dummy tag (0 or 1).
▪ Dummy tuples do not contribute to query answer.

• V knows:
▪ Schema of relations including column names, column types and constraints.
▪ (Maximum possible) cardinalities of intermediate tables.
▪ Operator execution order.
▪ Query answer A.

Obliviousness

11

• P commits private database D.
 D → [D]

• Each Party holds its partition respectively.
 [D]P or [D]V.

• V alone additionally holds an authentication key, ΔV.
 [D]P = [D]V + D * ΔV

• P only commits D once for all queries related to the same DB.

Private Database Commitment

No one can deduce commitment of the other party!

12

• V sends query Q to P.

P and V interactively evaluate the query in ZKSQL.

• During interactive proofs:
▪ P has dual representation (plaintext and commitments) of

query data including intermediate tables.
▪ V works on only its commitments [.]V.

• Finally P sends authenticated answer A and proof to V.

• V is able to verify the answer with the proof.
▪ Accepts if the proof returns 1.
▪ Otherwise, reject the answer.

Authenticated Query Evaluation

13

ZKSQL Workflow and Roadmap

14

• ZKSQL parses Q into a directed acyclic graph of operators

• Parsing in Apache Calcite*.

• We support:
▪ Filter (σ)
▪ Project (Π)
▪ Join (⋈)
▪ Aggregate (Group-by and Scalar)
▪ Sort (τ)

• ZKSQL has a protocol template for one or more algorithms for
each of these operators.

Front-End: Query Planning

*https://calcite.apache.org

15

• ZKSQL uses Volcano-style transformations to convert the DAG
into an efficient execution plan.

• Rules:
▪ Projection pushdown
▪ Filter merge
▪ Sort for group-by aggregate

• Revised plan has more efficient execution over ZK circuits.

Front-End: Canonicalized Plan

e.g., projection pushdown

16

• ZKSQL maps each DAG node to an operator template.

• Maps the operator with its parameters (predicates, sort direction, etc.) into operator instance.

• Compose these to form a sequential verifiable plan.

• For a leaf operator scanning table T, we instantiate this as a scan over the commitments [T].

• P and V interactively execute the verifiable plan one operator-at-a-time in the back end.

Verifiable Plan

17

• Protocol of each operator can directly translate to circuits based on its standard DBMS logic.

• Circuit-only approach shows 5~6 orders of magnitude slowdown over unauthenticated query evaluation.

• Instead, ZKSQL improves performance by delegating some steps to P.
▪ P and V interactively verify P’s local computation using set operations.
▪ Up to 2 OOM improvement.

Baseline Results

Query Q1 Q3 Q5 Q8 Q9 Q18

Plaintext 0.05s 0.02s 0.03s 0.01s 0.13s 0.05s

Circuit-Only 777s 24,130s 38,106s 32,040s 43,562s 126,168s

Slowdown 15,540X 1,206,500X 1,270,200X 3,204,000x 335,092X 2,523,360X

18

• Set operations verify intermediate tables locally computed by P.
▪ Improve oblivious pure circuits approach.

• We support four set operations in the ZK protocols:
▪ Equality
▪ Disjoint
▪ Intersection
▪ Union

• Each set operation has complexity O(n).

ZK Set Operations

19

• ZKSQL instantiates two kinds of ZK protocols for operators.

• A circuit-only protocol evaluates operators in pure circuits over commitments (as baseline).

• A set-based protocol is a mix of circuits and ZK set operations.

• T output from each operator either an intermediate table or the authenticated answer A

ZKSQL protocols

20

• Project, Filter, and Aggregate operators run in pure ZK circuits.

• Follow logic similar to standard DBMS version.

• P and V interactively prove a tuple at a time from input R.

• No direct optimization benefits from set operations.

Circuit-only protocols

21

• For each ej in the predicates ε, ej can be:
▪ a column mapping: e.g. e0 = $2
▪ an expression on columns: e.g. e1 = $1+$3.

• For each tuple ri in R, P and V sends the commitment [ri] to the circuit Cε and Cε returns [ti] to each party.
▪ If ej is a column in R, ZKSQL simply copies [ri,ej] to [ti,j] and it needs minor overhead.
▪ Otherwise the protocol invokes circuit Cej, and outputs [ti,j]: e.g. Cej evaluates [ti,1] with [ri,1] + [ri,3].
▪ V should abort [ti,j] if the proof returns 0 (soundness).

Projection

22

• Filter on predicate p.

• For each tuple ri in R, P and V send the commitment [ri] to the circuit Cp; Cp returns [ti] to each party.

• Each party also verifies predicates satisfaction.
▪ Cp marks [ti] is dummy if [ri] satisfies p, but [ri] is dummy.
▪ The dummy [ti] will not participate in the latter operators, but helps with keep obliviousness.

• If we have a specific limitation m, the protocol truncates T into first m tuples, after oblivious sort.

Filter

23

• Input: Agg in (SUM, AVG, MIN, MAX, COUNT).

• Obliviously sort R by group-by bins, G.

• For each tuple ri in R, P and V send the commitment [ri] to the circuit CAgg and CAgg replies to each with [ti].
▪ If [ri,dummy] = 1, then CAgg won’t involve [ri] into aggregated results.

• Mark [ti] to dummy if [ri+1] and [ri] in same group-by bin.
▪ Again, we don’t explicitly delete tuples.
▪ Instead, we make them as placeholders to keep obliviousness.

• Each group-bin has exactly one non-dummy tuple in T.

Aggregation

24

• Baseline with n input tuples:
▪ Oblivious (bitonic) sort takes O(n log2 n).
▪ Oblivious (nested-loop) join takes O(n2).

• We optimize protocols up to O(n) with ZK set operations.
▪ Implements equi-join and sort.
▪ Protocols consist of both circuits and set operations.

• Verification of P’s result:
▪ Verify set relationships of input/output tables: e.g. set equality.
▪ Prove properties of tables: e.g. monotonically ordering.

Set-based Protocols

25

• P locally sorts R to T w.r.t. sort definition and commits T into [T].
▪ Sort algorithm could be any efficient one picked by P itself.

• Sort definition is a set of sorting order (either increasing or decreasing) for some attributes of R.

• Order verification (correctness):
▪ Check each adjacent tuples in [T] are monotonically ordered w.r.t sort definition.

• Set equality verification (soundness):
▪ Check if [R] and [T] have exactly the same tuples (order-agnostic).

• Zero knowledge property is still guaranteed by obliviousness.
▪ Bitonic sort will do dummy swap even if the two tuples do not have to swap.

Sort

26

• P locally joins R and S w.r.t. join predicates p and commits T into [T].
▪ Again, P can use any efficient join algorithm according to the cost model.

• Predicate verification (correctness): All output rows satisfy p by linearly scanning [T].

• Set difference verification (soundness)
▪ Both parties generate [U] and [V], and P commits [ΔR] and [ΔS].
▪ ZKSQL checks if [R] = [ΔR] || [U] and [S] = [ΔS] || [V].

• Disjoint verification (completeness)
▪ Both parties generate [KR] and [KS] from [ΔR] and [ΔS].
▪ ZKSQL checks if [KR] is disjoint to [KS].

• Zero knowledge property is guaranteed by padding the table T up to maximum possible cardinality by P.
▪ If primary-key-foreign-key information is known, |[T]| = |Foreign-key table|.
▪ Otherwise, |[T]| = |R|*|S|.

Equi-Join

T has all output rows!

No spurious tuples added by P!

27

• We implement ZKSQL on top of EMP Toolkit* and our implementation is open-sourced#.

• We evaluate ZKSQL over TPC-H benchmark powered by PostgreSQL for plaintext execution.

• We choose queries varying degrees of complexity: Q1,Q3,Q5,Q8,Q9,Q18.

• We scale TPC-H database into 3 sizes: 60k Rows, 120k Rows and 240k Rows.

• We convert all float fields into 64-bit integers although ZKSQL supports this type.

• We setup two AWS EC2 r6i.4xlarge instances, one for each party.

• Metrics: runtime, memory usage and communication cost between parties.

Experimental Setup

 * https://github.com/emp-toolkit
 # https://github.com/vaultdb/zksql

https://github.com/emp-toolkit
https://github.com/vaultdb/zksql

28

• The commitment for each table is an one-time setup for all queries.

• Compared to costs of experiments over 60k Rows, the cost of commitment is minor part of our overall cost.

Commit Protocol Cost (TPC-H)

Part Partsupp Lineitem Orders Supplier Region Nation Customer

Runtime (s) 0.59 2.01 11.40 2.51 0.36 0.33 0.33 0.58

Memory (MB) 764 960 1,916 997 723 719 720 764

Comm. Cost (MB) 3.75 4.31 8.06 4.31 3.75 3.75 3.75 3.75

29

• Remove padding / dummy tags - leaks intermediate cardinalities (give up obliviousness)
▪ Performance proportional to true intermediate result sizes

• Dummy rows are necessary to uphold ZK guarantee!

Oblivious Querying Overhead

30

• Proving set relationships about results is more efficient than tracing the evaluation in circuits.
▪ Queries with more sorts and joins benefit more from the improvement.

• TPC-H queries gain approximately average ~2 orders of magnitude improvement.

ZKSQL Performance vs Circuit-only Baseline

31

• Project with column reordering and filter takes
minor cost.

• Math expressions are expensive in circuits.
▪ Project and Aggregate.

• Sort is expensive because of oblivious C&S.

• Joins dominate runtime (~57% of Q3 runtime).

Operator-at-a-Time Performance

32

• By default, r6i.4xlarge instances have 12.5Gbps network as our baseline.

• We restrict bandwidths to simulate low-bandwidth environments or geographically distributed machines.

• Throttling network to 20Mbps does not affect runtime performance.

• Throttling network to 5Mbps only causes 2X slowdown.

Performance with Varying Network Bandwidth

ZKSQL is insensitive to network conditions!

33

• Except Q9, all other queries doubles their runtime as input sizes approximately double.
▪ Q9 has wider rows -> more time for paging data into CPU cache.

• CPU runtime is proportional to the runtime as input sizes increase.

• Q9 occupies most memory among all queries, which ranges from 18 GB to 69 GB.

• Communication costs scale linearly with change of input size.

Scale Up

34

• Each r6i.4xlarge instance costs $1.01.

• Compared to ZKSQL, circuit-only approach takes ~1.2X-392X more monetary cost.

• In ZKSQL, costs for proving queries grow linearly as input size increases except for Q9.
▪ 120k Rows takes 2.5X more cost than 60k Rows.
▪ 240k Rows takes 2.8X more cost than 120k Rows.

Financial Cost
Query Q1 Q3 Q5 Q8 Q9 Q18 Total

60k Rows (Circuit-Only) $0.22 $6.77 $10.69 $8.99 $12.22 $35.39 $74.28

60k Rows (ZKSQL) $0.10 $0.04 $0.10 $0.14 $0.42 $0.09 $0.89

120k Rows (ZKSQL) $0.20 $0.09 $0.21 $0.29 $1.27 $0.17 $2.23

240k Rows (ZKSQL) $0.39 $0.18 $0.43 $0.57 $4.39 $0.34 $6.30

35

• CorrectDB and VeriDB rely more on trusted hardware while leak some information on program traces.

• IntegriDB and vSQL use cryptographic verifiable computation in outsourcing setting.
▪ Guarantee integrity, but not privacy and zero knowledge property.

• ZK extension of vSQL provides ZK proofs, but does not support ad-hoc queries.

Related work

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou. 2017. A Zero-Knowledge Version of vSQL. Cryptology ePrint Archive,
Report 2017/1146. https://eprint.iacr.org/2017/1146.

Sumeet Bajaj and Radu Sion. 2013. CorrectDB: SQL engine with practical query authentication. Proceedings of the VLDB endowment 6,7 (2013), 529-540.

Wenchao Zhou, Yifan Cai, Yangqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021. VeriDB: An sgx-based verifiable database. In Proceedings of the 2021 International
Conference on Management of Data. 2182-2194.

Yupeng Zhang, Jonathan Katzm and Charalampos Papamanthou. 2015. IntegriDB: Verifiable SQL for Outsourcing Databases. In ACM CCS 2015, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 1480-1491

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced
Databases. In 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Jose, CA, USA, 863-880.

36

• Each data provider has access to partitions of private input data.

• Two-phase computation: ZK for local computation, MPC for joint computation

• Local phase:
▪ Each party verifies local operators over its inputs with ZKSQL.
▪ All pairs: data provider is a prover and each of others is a verifier.

• Convert commitments for each party to secret shares.
▪ It is a core step needed from the cryptographic community.

• Joint phase:
▪ All-but-one malicious security.

• ZKSQL + MPC is secure and efficient to query over multiple data providers!

Future work: E2E Maliciously Secure Data Federation

37

• ZKSQL is the first work on verifiable and efficient query evaluation with zero-knowledge proofs
for ad-hoc queries.

• ZKSQL authenticates its query evaluation one operator at a time.

• Our set-based protocols improves the pure circuits counterparts.
▪ Up to 2 orders of magnitude speedup on TPC-H benchmark.

• Owing to universal composability, ZKSQL is extensible to new operator protocols.

• Next steps: securely and efficiently evaluate ad-hoc queries over multiple data providers
 using ZKSQL and MPC.

Conclusion

Thank You!
xiling.li@northwestern.edu

